Umlagerungen von Bicyclo[3.2.1]oct-2-en-6-yl- und Benzobicyclo[3.2.1]octenyl-Kationen

Wolfgang Kirmse* und Dietmar Mönch

Fakultät für Chemie der Ruhr-Universität Bochum, Postfach 102148, W-4630 Bochum 1

Eingegangen am 11. Januar 1992

Key Words: Wagner-Meerwein rearrangement / Hydride shift / Carbocations, bridged / π -Participation

Rearrangement of Bicyclo[3.2.1]oct-2-en-6-yl and Benzobicyclo[3.2.1]octenyl Cations

The ketones 9, 27, and 51 were prepared by modified or novel routes. The analogous tosylhydrazones 10, 28, and 52 were photolyzed in $0.5 \times \text{NaOH}$ (NaOD) to generate the carbocations 15, 34, and 53, respectively, by way of diazonium precursors. 2,3-Unsaturation (15) and 2,3-benzoanellation (34) affected the course of 4,6-(4,5-)hydride shifts, as elucidated by deuterium labeling. While the parent system 3 strongly prefers C-5 over C-6 (95:5) as the terminus of hydride shifts, 15 and 34 (55:45) approach the equivalence of C-5 and C-6 that is indicative of rapid Wagner-Meerwein rearrangements or sym-

metrically bridged intermediates. This trend is attributed to flattening of the six-membered ring in **15** and **24**, as compared to the chair conformation of **3**. On the other hand, predominant nucleophilic substitution at C-6 is unaffected by 2,3-unsaturation. We suggest that σ participation (k_{Δ}) by alkyl groups is not sufficient to eliminate inverting displacement of nitrogen from the diazonium precursors by the solvent (k_s) . Equivalence of C-5 and C-6 toward external nucleophiles is achieved only by π participation, i.e. with the 3,4-unsaturated and 3,4-benzoanellated bicyclo[3.2.1]oct-6-yl systems (**53**).

Spektren und Reaktionen des 2-Norbornvl-Kations entsprechen einer symmetrisch verbrückten, o-delokalisierten Struktur^[1]. Dagegen sind C-5 und C-6 des homologen 6-Bicyclo[3.2.1]octyl-Kations (3) nicht gleichwertig^[2]. Wurde 3 durch Stickstoff-Abspaltung aus Bicyclo[3,2,1]octan-6-diazonium-Ionen (1, $X = N_2^+$) erzeugt (Wasser, 25 °C), so erfolgte Substitution bevorzugt an C-6, Wasserstoff-Verschiebung bevorzugt von C-4 nach C-5. Als Ergebnis einer detaillierten Analyse wurden unsymmetrisch verbrückte Strukturen (3a,c) mit gestaffelter Konformation der Kohlenstoff-Kette C-2-C-4 postuliert, deren Äquilibrierung über die ekliptische Konformation 3b durch hohe Temperaturen und schwach nucleophile Medien gefördert wird (z.B. Solvolyse von 1, X = OTs, in Eisessig, 110°C)^[2]. Im Einklang mit diesen Vorstellungen steht das Verhalten des 4,4-Dimethyl-Derivats 2; dort konnten wir weder bei Desaminierung $(X = N_2^+)$ noch bei Solvolyse (X = OBs) Wagner-Meerwein-Umlagerung nachweisen^[3]. Methyl-Substitution an C-4 "versteift" die gestaffelte Konformation und erschwert die Umwandlung $3a \Rightarrow 3c$, Entgegengesetzte Wirkung sollte das "Abflachen" des Sechsrings durch Einführung einer Doppelbindung oder Anellierung eines Benzol-Rings in 2,3-Stellung haben. Befinden sich diese Strukturelemente in 3,4-Stellung, so wird außerdem die o-Delokalisierung in 3 durch π -Delokalisierung ersetzt.

Bicyclo[3.2.1]oct-2-en-6-yl-Kationen (15)

Ringerweiterung von 5-Norbornen-2-on-ethylenacetal (4) mit Dichlorcarben führt zu einem Gemisch der homologen Acetale 5 und $6^{[4]}$, aus dem wir 5 mittels LPLC abtrennten und zum Keton 9 hydrolysierten. Ein eindeutiger, aber langwieriger Weg zu 9 ist ebenfalls beschrieben^[5]. Aus 9 stellten wir das Tosylhydrazon 10 (74%) her, das in 0.5 N NaOH belichtet wurde. Als Hauptprodukte (Tab. 1) entstanden Bicyclo[3.2.1]oct-2-en-*exo*-6-ol (12) und Bicycolo[3.2.1]oct-3-en-*exo*-2-ol (13)^[6], die mittels HPLC getrennt und NMR-spektroskopisch identifiziert wurden (s. Exp. Teil). Als Nebenprodukte wurden kleine Mengen 9 und Bicyclo[3.2.1]oct-3-en*endo*-6-ol (7) gaschromatographisch nachgewiesen. Den *endo*-Alkohol 7 erhielten wir nahezu rein durch Reduktion von 9 mit LiAlH₄ (LiAlD₄) (7:12 = 98:2). S_N2-Substitution des *endo*-Tosylats 8 mit Azid und anschließende Reduktion mit LiAlH₄ führten zum *exo*-Amin 11. Die Desaminierung von 11 mit salpetriger Säure ergab vorwiegend 13 neben geringen Anteilen von 12 (Tab. 1).

1287

Chem. Ber. 1992, 125, 1287-1293 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/0505-1287 \$ 3.50+.25/0

1288 1288 $\begin{array}{c}
& \downarrow \\
&$

6

Tab. 1. Produkt- und Deuterium-Verteilungen (%) aus dem Zerfall von Bicyclo[3.2.1]oct-2-en-6-diazonium-Ionen (14, 15)^[a]

Reaktion		12	13	i	7	9
10, 0.5 N NaOH, hv 11, HNO ₂ , H ₂ O/Et ₂ O (pH = 3.5)		42.9 6.9	42.9 53.2 6.9 93.1		1.4 —	2.5
	12a:12b		13a : 13b		: 13c	: 13d
10 , 0.5 N NaOH, hν 11 , HNO ₂ , H ₂ O/Et ₂ O	90.7 n.b.	9.3 n.b.	27.7 31.5	27.7 31.5	22.3 18.5	22.3 18.5

[a] n.b.: nicht bestimmt.

Während Diazotierung von 11 das exo-Diazonium-Ion 16 erzeugt, führt die Belichtung von 10 primär zur Diazo-Verbindung^[7], deren Protonierung durch das Solvens ein Gemisch von exo- und endo-Diazonium-Ionen liefert. An der Produktbildung aus 10 ist das endo-Diazonium-Ion 14 offenbar stark beteiligt, u.a. im Sinne einer invertierenden Substitution (k_s) 14 \rightarrow 12. Auch die Bildung von endo-Alkoholen erfolgt in verwandten Systemen^[8] selektiv aus den endo-Diazonium-Ionen. Wegen dieser Beiträge von 14 ist die stark unsymmetrische D-Verteilung in 12 (aus 10) nicht repräsentativ für das Verhalten des Bicyclo[3.2.1]-oct-2-en-6-yl-Kations (15). Die D-Verteilung in 12, das aus 11 gebildet wurde, konnte wegen der geringen Ausbeute leider nicht bestimmt werden.

Das signifikante Ergebnis unserer Versuche ist deshalb die D-Verteilung in 13, dem Produkt der Wasserstoff-Verschiebung. Die Isotopomeren 13a und 13b entstehen in gleichen Anteilen, ebenso 13c und 13d. Demnach geht 13 aus dem delokalisierten bicyclischen Allyl-Kation 17 hervor, das in 2- und 4-Position nucleophil substituiert wird. Kationen, in denen C-2 und C-4 verschieden sind, z. B. H-verbrückte Zwischenstufen der Umlagerung $15 \rightarrow 17$, tragen zur Bildung von 13 nicht bei. Andererseits überwiegen die Isotopomeren 13a,b gegenüber 13c,d. Vollständige "Symmetrisierung" des Bicyclo[3.2.1]oct-2-en-6-yl-Kation (15) im Sinne einer raschen Wagner-Meerwein-Umlagerung 15a \Rightarrow 15c bzw. einer verbrückten Struktur 15b wird nicht erreicht. Die Desaminierung von 11 gibt ein höheres Verhältnis 13a,b:13c,d (1.70) als die Photolyse des Tosylhydrazons 10 (1.24). Synchrone N₂-Abspaltung und H-Verschiebung des *exo*-Diazonium-Ions 16 (\rightarrow 17a) könnte diese Beobachtung erklären und zur ungleichmäßigen D-Verteilung in 13 beitragen. Auch wenn die "Unsymmetrie" ausschließlich dem Kation 15 angelastet wird, ist sie um eine Größenordnung geringer als im Stammsystem 3 (formal 15a:15c = 1.2-1.7 gegenüber 3a:3c = 15-19). Die "Abflachung" des Sechsrings hat den erwarteten Einfluß auf die Geschwindigkeit der Wagner-Meerwein-Umlagerung.

2,3-Benzobicyclo[3.2.1]octen-6-yl-Kationen (34)

Die Darstellung von 2,3-Benzobicyclo[3.2.1]octen-6-on (27) erfolgte in Abwandlung einer bekannten Route^[9]. Das Diels-Alder-Addukt **18** von Maleinsäure(anhydrid) an 2-Naphthol^[110] ergibt bei oxidativer Decarboxylierung mit Blei(IV)-acetat neben **19** das Ketolacton **22** (14%)^[11], dessen Hydrierung zur Ketosäure **25** führt^[9]. Die früher^[9] erfolglose Decarboxylierung des Peresters **26** gelang uns nach der Methode von Rüchardt^[12] mit 47% Ausbeute. Damit wird ein mehrstufiger Umweg^[9] von **25** nach **27** vermieden. Zu Vergleichszwecken wurden auch 3,4-Benzobicyclo[3.2.1]octen-2-on (**29**) und die entsprechenden Alkohole (**24**, **40**) dargestellt. Wir hydrierten **19** zu **20**^[13] und überführten dieses in das Tosylhydrazon **21**. Belichtung von **21** in 0.5 N NaOH ergab **23**^[11a] und **24**^[14] im Verhältnis 1:9. Durch Oxidation von **24** erhielten wir **29** (87%), das bereits auf einem anderen Weg synthetisiert wurde^[15].

Die Produkte aus der Belichtung des Tosylhydrazons 28 in 0.5 N NaOH stimmten mit denen des Bicyclo [3.2.1]octenyl-Analogen 10 weitgehend überein (Tab. 2). Neu ist nur die Bildung des Eliminierungsproduktes 38 und ein kleiner Anteil 7,6-H-Verschiebung, $34 \rightarrow 35 \rightarrow 32$ (zur direkten Erzeugung von 35 s.u.). Ein weiterer

Unterschied besteht naturgemäß in der Ladungsverteilung der durch 4,6-H-Verschiebung entstehenden Carbokationen. Während das Allyl-Kation 14 gleichmäßig an C-2 und C-4 substituiert wird, reagiert das Benzyl-Kation 37 ausschließlich an C-4. Davon abgesehen ist die D-Verteilung in beiden Fällen sehr ähnlich (55.4:44.6 in 13, 56.5:43.5 in 24). Mit der annähernden Gleichverteilung von D in 13 und 24 kontrastiert die stark unsymmetrische Verteilung bei direkter Substitution zu 12 bzw. 31 (jeweils 91:9). Die oben diskutierten Hinweise zur Beteiligung von *exo*- und *endo*-Diazonium-Ionen an der Produktbildung sind auf 33 und 36 übertragbar.

Die Belichtung des Tosylhydrazons 30 in $0.5 \times \text{NaOH}$ ergab erwartungsgemäß nur 3,4-Benzobicyclo[3.2.1]octen-2-yl-Derivate (die H-Verschiebung $34 \rightarrow 37$ ist mit einem erheblichen Energiegewinn verbunden und daher irreversibel). Das schon mit 28 beobachtete hohe Verhältnis 24:40 findet sich auch hier wieder (Tab. 2); dieser Befund spricht für eine sterische bedingte *exo*-Selektivität des Benzyl-Kations 37. Auffallend sind die hohen Anteile des Ketons 29 und des Eliminierungsprodukts 38. Die aus 30 primär er-

Tab. 2. Produkt- und Deuterium-Verteilungen bei Belichtung der Tosylhydrazone 28 und 30 in 0.5 N NaOH (NaOD)

Edukt	24	27	Pro 29	odukte (% 31) 32	38	40
28 ^[a] 30 ^[d]	50.9 ^[b] 32.6	6.3 _		27.8 ^[c]	4. 7	6.2 43.0	1.8 0.9

^[a] Ein nicht identifiziertes Produkt (2.3%). $-^{[b]}$ [1-²H]-**24**: [7-²H]-**24** = 43.5: 56.5. $-^{[c]}$ [5-²H]-**31**: [6-²H]-**31** = 8.6: 91.4. $-^{[d]}$ Zwei nicht identifizierte Produkte (5.7 und 1.0%). zeugte Diazo-Verbindung ist Aryl-substituiert und wird durch das Lösungsmittel langsamer protoniert als die rein aliphatischen Diazo-Verbindungen aus 10 und 27. Die Photolyse von 30 dürfte mindestens teilweise über das Carben 39 ablaufen, das zur Bildung von 29 und 38 führt. Für die Protonierung von 39 zum Carbokation 37 gibt es Präzedenzfälle^[16].

3,4-Benzobicyclo[3.2.1]octen-6-yl-Kationen (53)

Die bisher vorgenommenen Abwandlungen des Bicyclo-[3.2.1]octan-6-yl-Kations bewirken Konformationsänderungen und bringen zusätzlichen Energiegewinn bei der 4,6-(4,5-)-H-Verschiebung. Gemeinsames Merkmal der degenerierten Wagner-Meerwein-Umlagerung von 3, 15 und 34 sind Alkyl-Wanderungen bzw. Alkyl-verbrückte Zwischenstufen. Eine Doppelbindung in 3,4-Stellung ermöglicht dagegen eine π -Beteiligung analog zum 5-Norbornen-2-yl-Katon^[17]. Grob und Mitarbeiter erhielten bei Solvolysen des optisch aktiven und des 6-D-markierten Bicyclo-[3.2.1]oct-3-en-6-yl-dinitrobenzoats 41 die Produkte 42 und 43 in racemischer Form und mit weitgehender D-Verteilung, so daß eine symmetrische Struktur des intermediären Carbokations gesichert ist^[18].

Das analoge 3,4-Benzo-anellierte System war noch unbekannt. Wir stellten das Keton 51 auf folgendem Weg her: Aus dem Produktgemisch der Diels-Alder-Reaktion von Acrylsäureethylester mit 2-Naphthol^[19] wurde der Ester 44 (25%) mittels LPLC isoliert. Verseifung zur Carbonsäure 45 und Curtius-Abbau lieferte das Amin 46 (75%), dessen Diazotierung mit Natriumnitrit in Eisessig die Acetate 47–50 (57:24:6:13) ergab. Die hier interessierenden Isomeren 48 und 49 wurden NMR-spektroskopisch durch Vergleich mit den Carbonyl-freien Acetaten^[14] zugeordnet und katalytisch zu 3,4-Benzobicyclo[3.2.1]octen-6-on (51) hydriert. Das aus 51 erhaltene Tosylhydrazon 52 ergab bei Belichtung in 0.5 N NaOH (NaOD) \geq 95% *exo*-Alkohol 54 mit annähernder Gleichverteilung von D auf die Positionen 5 und 6 (51.5:48.5). Diese Befunde sprechen für ein symmetrisch Aryl-verbrücktes Kations 53 (Arenonium-Ion) als Zwischenstufe.

Zusammenfassende Diskussion

Die Einführung einer Doppelbindung (15) oder Benzo-Anellierung (34) in 2,3-Stellung des Bicylo[3.2.1]oct-6-yl-Kations (3) beeinflußt vor allem den Verlauf der 4,6-(4,5-)-H-Verschiebung. Wird im Stammsystem 3 C-5 als Endprodukt der H-Verschiebung stark gegenüber C-6 bevorzugt (95:5), so nähert man sich bei 15 und 34 (55:45) der Gleichverteilung, die auf eine rasche Wagner-Meerwein-Umlagerung bzw. symmetrische Verbrückung hinweist. Dieser Trend wird der Abflachung des Sechsrings (Aufhebung der Sessel-Konformation von 3) zugeschrieben. Im Gegensatz dazu bleibt die überwiegende nucleophile Substitution an C-6 durch die Strukturänderungen nahezu unberührt. Die Nachbargruppenwirkung der wandernden Reste (Alkyl, Allyl, Benzyl) reicht nicht aus, um einen raschen Zerfall der Diazonium-Vorstufen zu induzieren und invertierende Substitution durch das Lösungsmittel (k_s) zu unterdrücken. Erst die π -Beteiligung in 3,4-ungestättigten^[18] bzw. Benzo-anellierten Systemen (53) führt zur Gleichwertigkeit von C-5 und C-6 auch gegenüber Nucleophilen.

Experimenteller Teil

Allgemeines: Siehe Lit.^[3]. Die für Vergleichszwecke anschaulichen Namen der Benzo-anellierten Verbindungen entsprechen nicht den Nomenklaturregeln.

Bicyclo[3.2.1]oct-2-en-6-on-(p-toluolsulfonylhydrazon) (10): Nach Lit.^[4] erfolgte die Ringerweiterung von 4 mit Trichloressigsäuremethylester/Natriummethylat (45% Ausb.); Chlor in Allyl-Stellung wurde mit LiAlH₄ (60%), Chlor in Vinyl-Stellung anschließend mit Lithium in flüssigem Ammoniak entfernt. Aus dem so erhaltenen Gemisch^[4] wurde 5 mittels LPLC [Kieselgel, Hexan/Ether (9:1)] mit 35% Ausb. abgetrennt; ¹H-NMR (CDCl₃): $\delta = 1.72$ (dd, J =11.0 und 2.8 Hz, 1 H), 1.89 (dt, J = 11.0 und 5.0 Hz, 1 H), 1.98 (dd, J = 13.2 und 2.8 Hz, 1 H), 2.05 (dd, J = 13.2 und 6.0 Hz, 1 H), 2.2 (m, 3H), 2.35 (dd, J = 10.5 und 6.0 Hz, 1H), 3.75 - 4.0 (m, 4H), 5.44 (dm, J = 9.0 Hz, 1 H), 5.97 (dd, J = 10.5 und 9.0 Hz, 1 H). Saure Hydrolyse von 400 mg (2.4 mmol) 5 in 6 ml Aceton und 0.6 ml 10proz. Schwefelsäure (16 h Raumtemp.) ergab nach üblicher Aufarbeitung^[4] und Reinigung durch HPLC [Kieselgel, Hexan/ Ether (4:1)] 150 mg (51%) Bicyclo[3.2.1]oct-2-en-6-on (9), dessen Spektren mit den Angaben in Lit.^[5] übereinstimmten. Zu 110 mg (0.90 mmol) 9 und 185 mg (1.0 mmol) p-Toluolsulfonohydrazid in 2.5 ml trockenem Ethanol gab man 3 Tropfen ges. methanolische Salzsäure und erhitzte 1 h unter Rückfluß. Nach 16 h bei Raumtemp. saugte man ab und kristallisierte aus Ethanol um: 194 mg (74%) 10, Schmp. 177–178 °C. – IR (KBr): $\tilde{v} = 3250 \text{ cm}^{-1}$ (NH), 1605 (Ar), 1350 (SO₂), 1170 (SO₂). – ¹H-NMR (CDCl₃): $\delta =$ 1.7-1.9 (m, 2H), 2.0-2.7 (m, 6H), 2.40 (s, 3H), 2.87 (m, 1H), 5.30 (m, 1 H), 5.86 (m, 1 H), 7.28 (m, 2 H), 7.81 (m, 2 H).

C₁₅H₁₈N₂O₂S (290.4) Ber. C 62.04 H 6.25 Gef. C 62.17 H 6.39

60 mg (0.2 mmol) 10 in 20 ml 0.5 N NaOH wurden bei 20 °C 3 h mit einem Hg-Mitteldruckbrenner (TQ 150, Quarzlampenges. Hanau) belichtet. Anschließend wurde mit Natriumchlorid gesättigt und 3mal mit je 10 ml Ether extrahiert. Die vereinigten Extrakte trocknete man mit Magnesiumsulfat, engte im Rotationsverdampfer ein und analysierte mittels GC (39 m Carbowax, 130 °C, Ergebnisse in Tab. 1). 9 und 7 (s. u.) wurden gaschromatographisch mit Hilfe von Vergleichsproben identifiziert, 12 und 13 mittels HPLC [Kieselgel, Hexan/Ether (1:1)] isoliert. *Bicyclo[3.2.1]oct-2-en-exo-6-ol* (12): IR (CDCl₃): $\tilde{v} = 3520 \text{ cm}^{-1}$ (OH), 1610 (C=C). - ¹H-NMR (CDCl₃): $\delta = 1.3-2.6 \text{ (m, 9 H)}, 4.16 \text{ (dd, } J = 7.2 \text{ und 2.0 Hz},$ 1 H), 5.26 (dm, <math>J = 9.6 Hz, 1 H), 5.89 (dm, J = 9.6 Hz, 1 H).

C₈H₁₂O (124.2) Ber. C 77.38 H 9.74 Gef. C 77.39 H 9.86

Bicyclo[3.2.1]oct-3-en-exo-2-ol (13)^[6]: IR (CDCl₃): $\tilde{v} = 3610$ cm⁻¹ (OH), 1605 (C=C). - ¹H-NMR (CDCl₃): $\delta = 1.21$ (m, 2H), 1.5-1.65 (m, 4H), 1.69 (d, J = 11.1 Hz, 1H), 1.86 (dddd, J = 13.8, 10.0, 8.0 und 3.7 Hz, 1H), 2.40 (m, 1H), 2.50 (m, 1H), 3.75 (dd, J = 4.0 und 2.6 Hz, 1H), 5.49 (ddd, J = 9.5, 4.0 und 1.8 Hz, 1H), 6.07 (ddt, J = 9.5, 6.8 und 1.0 Hz, 1H).

Eine Belichtung von 80 mg (0.27 mmol) 10 in 20 ml 0.5 N NaOD/ D₂O wurde analog durchgeführt und aufgearbeitet. – ²H-NMR (CCl₄): [²H]-12: δ = 2.08 (9.3 ± 0.2%), 4.02 (90.7 ± 0.4%); [²H]-13: δ = 1.55 (27.7 ± 0.2%), 1.80 (27.7 ± 0.2%), 2.33 (22.3 ± 0.2%), 2.44 (22.3 ± 0.2%).

Bicyclo[3.2.1]oct-2-en-exo-6-amin (11): Zu einer Suspension von 1.0 mg (26.3 mmol) LiAlH₄ (LiAlD₄) in 30 ml Ether tropfte man 1.2 g (10 mmol) 9 in 20 ml Ether, rührte 1 h bei Raumtemp., hydrolysierte vorsichtig, filtrierte vom Aluminiumhydroxid-Niederschlag ab, trocknete die Lösung mit Magnesiumsulfat und engte im Rotationsverdampfer ein: 1.1 g (89%) Rohprodukt, 7:12 = 98:2 (GC). Bicyclo[3.2.1]oct-2-en-endo-6-ol (7) wurde mittels HPLC [Kieselgel, Hexan/Ether (1:1)] und Sublimation gereinigt; Schmp. 81°C. – IR (CDCl₃): $\tilde{v} = 3610 \text{ cm}^{-1}$ (OH), 1640 (C=C). – ¹H-NMR (CDCl₃): $\delta = 1.4-2.6 \text{ (m, 9H)}$, 4.48 (m, 1H), 5.52 (dtd, J =9.4, 3.1 und 1.4 Hz, 1H), 6.02 (m, 1H).

C₈H₁₂O (124.2) Ber. C 77.38 H 9.74 Gef. C 77.20 H 9.77

Zu 1.1 g (8.8 mmol) [6-²H]-7 in 18 ml Pyridin gab man bei 0°C 1.9 g (9.7 mmol) *p*-Toluolsulfonylchlorid, rührte 3 h bei 0°C und ließ die Mischung 3 d bei -20°C im Kühlschrank stehen. Man goß auf 120 g Eis und 23 g konz. Salzsäure, schüttelte mit Ether aus, wusch die Ether-Phase mit ges. NaHCO₃-Lösung und Wasser, trocknete mit Magnesiumsulfat, entfernte den Ether im Rotationsverdampfer und reinigte den Rückstand mittels HPLC [Kieselgel, Hexan/Ether (4:1)]: 1.6 g (65%) [6-²H]-8. - ¹H-NMR (CDCl₃): $\delta = 1.35 - 1.95$ (m, 4H), 2.0 - 2.25 (m, 3H), 2.32 (s, 3H), 2.37 (m, 1H), 5.31 (dt, J = 10.0 und 3.0 Hz, 1H), 5.79 (tm, J = 10.0 Hz, 1H), 7.20 (m, 2H), 7.67 (m, 2H).

C15DH17O3S (279.4) Ber. C 64.49 H 6.85 Gef. C 64.57 H 6.80

1.3 g (4.6 mmol) $[6^{-2}H]$ -8 in 20 ml Dimethylsulfoxid und 1.0 g (15 mmol) Natriumazid in 2 ml Wasser wurden bei 90°C 27 h gerührt. Anschließend verdünnte man mit 150 ml Wasser und schüttelte mehrmals mit Ether (insgeamt 80 ml) aus. Die vereinigten Ether-Auszüge wurden 2mal mit Wasser gewaschen, mit Magnesiumsulfat getrocknet und im Rotationsverdampfer eingeengt. Den Rückstand, 0.5 g rohes Azid [$\tilde{\nu} = 2110 \text{ cm}^{-1}$ (N₃)], nahm man in 10 ml Ether auf und tropfte die Lösung zu 0.50 g Lithiumalanat in 20 ml Ether. Man rührte 24 h bei Raumtemp., versetzte tropfenweise mit Wasser, filtrierte den Hydroxid-Niederschlag ab und extrahierte ihn im Soxhlet-Apparat mit Ether. Zu den vereinigten Ether-Lösungen gab man 6 ml konz. Salzsäure und engte im Rotationsverdampfer zur Trockene ein. Das Amin-hydrochlorid (0.52 g, 97%) wurde aus Methanol/Essigester umkristallisiert. – ¹H-NMR (CDCl₃): δ = 1.3-2.7 (m, 8H), 5.39 (dm, J = 10 Hz, 1H), 5.90 (tm, J = 10 Hz, 1 H). $-{}^{2}$ H-NMR (CCl₄): $\delta = 3.11$.

C₈DH₁₃ClN (160.7) Ber. C 59.81 H 8.16 Gef. C 58.81 H 8.44

200 mg (1.3 mmol) $[6-^{2}H]-11 \cdot HCl$ in 20 ml Wasser wurden mit 20 ml Ether überschichtet. Unter Rühren tropfte man 170 mg (2.6 mmol) Natriumnitrit in 2 ml Wasser langsam zu und hielt durch gleichzeitige Zugabe von 1 N HClO₄ den pH-Wert zwischen 3.4 und 3.8 (Glaselektrode). Nach 16stdg. Rühren bei Raumtemp. trennte man die Ether-Phase ab, sättigte die wäßrige Phase mit Natriumchlorid und extrahierte 3mal mit je 15 ml Ether. Die vereinigten Ether-Lösungen schüttelte man mit ges. NaHCO3-Lösung, trocknete mit Magnesiumsulfat und destillierte einen großen Teil des Ethers über eine 10-cm-Vigreux-Kolonne ab. Der Rest wurde mit 40 mg Lithiumalanat 1 h unter Rückfluß gerührt. Nach Zugabe einiger Tropfen Wasser filtrierte man den Hydroxid-Niederschlag ab und trocknete mit Magnesiumsulfat. GC (11 m Tetracyanethoxybutan, 80°C) zeigte 6.2% 12 und 83.8% 13 neben 4 nicht identifizierten Substanzen (zusammen 10%). Mittels HPLC [Kieselgel, Hexan/Ether (1:1)] wurde 13 isoliert. $- {}^{2}$ H-NMR (CCl₄): $\delta = 1.55$ (31.5%), 1.80 (31.5%), 2.33 (18.5%), 2.44 (18.5%).

2,3-Benzobicyclo[3.2.1]octen-6-on-(p-tolylsulfonylhydrazon) (28): 1.82 g (6.3 mmol) 26^[9] wurden in 30 ml Phenylessigsäure-ethylester 1 h auf 150 °C erhitzt. Nach dem Abkühlen versetzte man mit einer Lösung von 85 g Kaliumhydroxid in 100 ml Wasser und 15 ml Methanol und rührte 16 h bei Raumtemp. Man goß in 600 ml eiskaltes Wasser, extrahierte 4mal mit je 100 ml Ether, trocknete die vereinigten Ether-Extrakte mit Magnesiumsulfat, engte im Rotationsverdampfer ein und erhielt 512 mg (47%) rohes 2,3-Benzobicyclo[3.2.1]octen-6-on (27)^[9], das mittels HPLC [Kieselgel, Hexan/Ether (4:1)] gereinigt wurde. – ¹H-NMR (CDCl₃): δ = 2.14 (ddd, J = 11.9, 3.4 und 1.0 Hz, 1 H), 2.3 (m, 2 H), 2.51 (dd, J = 18.0 und 6.5 Hz, 1 H), 2.75 (tm, J = 5.8 Hz, 1 H), 2.94 (d, J = 17.3 Hz, 1 H), 3.12 (dd, J = 17.3 und 5.8 Hz, 1 H), 3.42 (m, 1 H), 7.0–7.15 (m, 4 H).

Zu 320 mg (1.7 mmol) p-Toluolsulfonohydrazid in 1.5 ml trockenem, siedendem Ethanol gab man 250 mg (1.4 mmol) **27** und 2 Tropfen ges. methanolische Salzsäure. Man erhitzte 1 h unter Rückfluß, ließ 16 h bei Raumtemp. auskristallisieren, saugte ab, wusch mit wenig Pentan und kristallisierte aus Ethanol um: 378 mg (76%) **28**, Schmp. 170–171 °C. – IR (KBr): $\tilde{v} = 3450 \text{ cm}^{-1}$ (NH), 1600 (Ar), 1355 (SO₂), 1170 (SO₂). – ¹H-NMR (CDCl₃): $\delta = 1.95$ (m, 2H), 2.2–3.3 (m, 6H), 2.41 (s, 3H), 2.82 (d, J = 3.6 Hz, 1H), 6.8–7.3 (m, 6H), 7.8 (m, 2H).

 $\begin{array}{rll} C_{19}H_{20}N_2O_2S \ (340.5) & \mbox{Ber. C} \ 67.03 \ \ H \ 5.92 \\ & \mbox{Gef. C} \ 67.06 \ \ H \ 5.99 \end{array}$

100 mg (0.29 mmol) **29** wurden in 10 ml 0.5 N NaOH nach den Angaben für **10** belichtet und aufgearbeitet. GC (44 m Carbowax 20 M, 180 °C): Ergebnisse in Tab. 2. Mittels HPLC [Kieselgel, Hexan/Ether (1:1)] isolierte man die Hauptprodukte **24**^[14] (s.u.) und **31**. – ¹H-NMR (CDCl₃): δ = 1.7 (br. s, OH), 1.73 (dd, J = 11.5 und 1.0 Hz, 1 H), 1.79 (dddd, J = 13.6, 6.5, 3.5 und 1.0 Hz, 1 H), 2.12 (dddd, J = 11.5, 5.5, 4.0 und 1.3 Hz, 1 H), 2.31 (ddd, J = 13.6, 7.1 und 2.2 Hz, 1 H), 2.38 (br. t, J = 5.5 Hz, 1 H), 2.71 (br. d, J = 17.1 Hz, 1 H), 3.07 (dd, J = 17.1 und 5.6 Hz, 1 H), 3.11 (br. t, J = 5.3 Hz, 1 H), 4.18 (dd, J = 7.1 und 3.5 Hz, 1 H), 6.93 (m, 1 H), 7.0 – 7.1 (m, 3 H). – Die Nebenprodukte **27**^[9] (s.o.), **32** (s.u.), **38**^[20] und **40**^[14] wurden durch GC-Vergleich identifiziert.

Aus einer analogen Belichtung von 80 mg (0.23 mmol) **28** in 10 ml 0.5 N NaOD/D₂O isolierten wir [²H]-**24** [²H-NMR (CCl₄): $\delta = 1.91$ (56.5 \pm 0.5%), 2.54 (43.5 \pm 0.6%)] und [²H]-**31** [²H-NMR (CCl₄): $\delta = 2.31$ (8.6 \pm 0.5%), 4.11 (91.4 \pm 0.5%)].

3,4-Benzobicyclo[3.2.1]octen-2-on-(p-tolylsulfonylhydrazon) (30): Bei der Synthese von 27 anfallendes $19^{[11]}$ wurde zu 5,6-Benzobicyclo[2.2.2]octen-2-on (20)^[46] hydriert (Ethanol, Pd/C, Normaldruck und Raumtemp., 99%). Nach den Angaben für 28 erhielt man aus 170 mg (0.99 mmol) 20 und 210 mg (1.13 mmol) p-Toluolsulfonohydrazid 265 mg (79%) 5,6-Benzobicyclo[2.2.2]octen-2on-(p-tolylsulfonylhydrazon) (21), Schmp. 219 – 220 °C. – IR (KBr): $\tilde{v} = 3450 \text{ cm}^{-1}$ (NH), 1650 (C=N), 1600 (Ar), 1340 (SO₂). – ¹H-NMR (CDCl₃): $\delta = 1.4 - 2.0 \text{ (m, 5H)}, 2.10 \text{ (m, 1H)}, 2.12 \text{ (m, 1H)},$ 2.42 (s, 3H), 3.31 (m, 1H), 3.73 (m, 1H), 7.1 – 7.4 (m, 6H), 7.8 (m,2H). C₁₉H₂₀N₂O₂S (340.5) Ber. C 67.03 H 5.92Gef. C 67.18 H 5.82

Zu 900 mg (2.56 mmol) **21** in 20 ml 0.5 N NaOH gab man tropfenweise 1,2-Dimethoxyethan, bis eine klare Lösung entstanden war. Nach 5stdg. Belichtung arbeitete man nach den Angaben für **10** auf und erhielt 225 mg (54%) Produktgemisch, das hauptsächlich **24**^[14] (82.4%) und **23**^[11a] (9.3%) enthielt. Mittels HPLC [Kieselgel, Hexan/Ether 81:1)] wurde **24** abgetrennt. Man rührte 450 mg (2.59 mmol) **24** und 2.2 g (10.2 mmol) Pyridinium-chlorochromat in 15 ml trockenem Dichlormethan 1.5 h bei Raumtemp., filtrierte durch Kieselgel, engte im Rotationsverdampfer ein und erhielt 385 mg (87%) **29**^[15]. 250 mg (1.34 mmol) *p*-Toluolsulfonohydrazid wurden mit 200 mg (1.16 mmol) **29** nach der Vorschrift für **28** umgesetzt; Ausb. 288 mg (73%) **33**, Schmp. 188–189 °C. – IR (KBr): $\tilde{v} = 3200 \text{ cm}^{-1}$ (NH), 1600 (År), 1350 (SO₂), 1170 (SO₂). – ¹H-NMR (CDCl₃): $\delta = 1.1-2.3$ (m, 7H), 2.40 (s, 3H), 3.19 (m, 1H), 3.41 (m, 1H), 7.0–7.4 (m, 5H), 7.7–8.1 (m, 3H).

$$C_{19}H_{20}N_2O_2S$$
 (340.5) Ber. C 67.03 H 5.92
Gef. C 67.22 H 5.95

Belichtung von 150 mg (0.44 mmol) 30 nach den Angaben für 10 ergab die in Tab. 2 aufgeführten Produkte. 24, 29 und 40 wurden durch GC-Vergleich identifiziert. Das Hauptprodukt 38 isolierte man mittels PGC (1.4 m SE 30, 170 °C); sein ¹H-NMR-Spektrum stimmte mit den Angaben in Lit.^[20] überein.

3,4-Benzobicyclo[3.2.1]octen-6-on-(p-tolylsulfonylhydrazon) (52): 40.0 g (0.28 mol) 2-Naphthol wurden nach Lit.^[19] bei 170°C mit 1292

Acrylsäure-ethylester umgesetzt. Nach 70 h und 46% Umsatz isolierte man mittels LPLC [Kieselgel, Hexan/Ether (1:1)] 3.2 g (21%) 44. - ¹H-NMR (CDCl₃): $\delta = 1.11$ (t, J = 7.1 Hz, 3H), 2.0-2.6 (m, 4H), 3.02 (td, J = 7.6 und 3.0 Hz, 1H), 3.60 (t, J = 3.0 Hz, 1 H), 3.77 (dd, J = 6.0 und 3.0 Hz, 1 H), 3.98 (qd, J = 7.1 und 1.0 Hz, 2H), 7.16 (br. s, 4H).

C₁₅H₁₆O₃ (244.3) Ber. C 73.75 H 6.60 Gef. C 73.60 H 6.78

Durch 0.5 N NaOC₂H₅ (24 h Rückfluß) wurde 44 zu dem exo/endo-Gemisch äquilibriert, dessen ¹H-NMR-Spektrum in Lit.^[19] beschrieben ist.

Zu 2.3 g (9.8 mmol) 44 in 10 ml Ethanol gab man 1.0 g (17.8 mmol) Kaliumhydroxid in 5 ml Wasser, rührte 1 h bei Raumtemp., säuerte mit 10proz. Salzsäure an, extrahierte 3mal mit je 30 ml Ether, trocknete die vereinigten Ether-Extrakte mit Magnesiumsulfat und entfernte den Ether im Rotationsverdampfer: 1.86 g (91%) 4-Oxo-7,8benzobicyclo[2.2.2]octen-endo-2-carbonsäure (45), Schmp. 138°C. IR (CDCl₃): $\tilde{v} = 3600 - 2400 \text{ cm}^{-1}$ (OH), 1700 (C=O). - ¹H-NMR (CDCl₃): $\delta = 2.0 - 2.6$ (m, 4H), 3.08 (ddd, J = 9.4, 8.4 und 2.4 Hz, 1 H), 3.65 (t, J = 2.7 Hz, 1 H), 3.80 (q, J = 2.3 Hz, 1 H), 7.20 (m, 4H), 9.7 (br. s, 1H).

C13H12O3 (216.2) Ber. C 72.21 H 5.59 Gef. C 72.06 H 5.73

Zu 1.8 g (8.3 mmol) 45 in 15 ml Aceton tropfte man bei -15° C 1.0 g (10.0 mmol) Triethylamin in 20 ml Aceton und anschließend 1.17 g (10.8 mmol) Chlorameisensäure-ethylester in 10 ml Aceton. Nach 10 min wurden bei 0°C 0.86 g (13.3 mmol) Natriumazid in 10 ml Wasser zugegeben. Man rührte 2 h 0°C, goß in 100 ml eiskaltes Wasser und extrahierte 5mal mit je 20 ml Toluol. Die vereinigten Toluol-Phasen wusch man mit 20 ml Wasser, trocknete mit Magnesiumsulfat und tropfte die Lösung langsam in einen auf 120°C geheizten Kolben, wobei Aceton abdestillierte. Nach beendeter Zugabe erhitzte man 1 h unter Rückfluß und engte im Rotationsverdampfer ein [IR: $\tilde{v} = 2260 \text{ cm}^{-1}$ (NCO)]. Man rührte 60 h mit 20 ml 10proz. Salzsäure, engte im Rotationsverdampfer zur Trockene ein und kristallisierte den Rückstand aus Methanol/ Essignster um: 1.3 g (75%) 46 · HCl. $- {}^{1}$ H-NMR (D₂O): $\delta = 1.70$ (dt, J = 15.2 und 3.2 Hz, 1 H), 2.0-2.9 (m, 3H), 3.78 (m, 2H), 4.12(dt, J = 10.0 und 3.6 Hz, 1 H), 7.4 (m, 4 H).

C12H14CINO (223.7) Ber. C 64.43 H 6.31 N 6.26 Gef. C 63.79 H 6.43 N 6.22

Zu 800 mg (3.8 mmol) 46 · HCl in 20 ml Eisessig gab man in kleinen Portionen 1.32 g (19.1 mmol) Natriumnitrit, rührte 1 h bei Raumtemp., versetzte mit 20 ml Wasser und neutralisierte mit festem NaHCO₃. Man extrahierte 3mal mit je 100 ml Ether, wusch die vereinigten Ether-Phasen mit NaHCO3-Lösung und Natriumchlorid-Lösung, trocknete mit Magnesiumsulfat und engte im Rotationsverdampfer ein: 640 mg (73%) Produktgemisch, das laut GC (20 m OV 17, 180°C) neben 3 leichtflüchtigen Komponenten (13%) die Acetate 47 (48%), 48 (20%), 49 (5%) und 50 (11%) enthielt. Sie wurden mittels HPLC [Kieselgel, Hexan/Ether (1:1)] isoliert, wobei es zur Weiterverarbeitung zweckmäßig war, 48 (23.7 min) und 49 (25.7 min) gemeinsam von 50 (15.5 min) und 47 (18.2 min) abzutrennen. – ¹H-NMR (CDCl₃): 47: $\delta = 1.7 - 2.6$ (m, 3H), 2.11 (s, 3H), 2.85 (dd, J = 18.4 und 2.6 Hz, 1H), 3.6 (m, 2H), 5.03 (dtd, J = 9.4, 3.8 und 1.5 Hz, 1 H), 7.24 (m, 4 H); 48: $\delta = 1.9 - 2.5$ (m, 4H), 2.13 (s, 3H), 2.95 (m, 1H), 3.42 (d, J = 5.0 Hz, 1H), 5.82 (d, J = 2.6 Hz, 1 H), 7.3 (m, 4 H).

C14H14O3 (230.3) Ber. C 73.03 H 6.13 Gef. C 72.92 H 6.09

¹H-NMR (CDCl₃): **49**: $\delta = 2.0 - 2.7$ (m, 4H), 2.17 (s, 3H), 3.16 (m, 1 H), 3.35 (m, 1 H), 6.31 (d, J = 5.6 Hz, 1 H), 7.3 (m, 4 H); 50: $\delta = 2.11$ (s, 3 H), 2.2–2.9 (m, 4 H), 3.49 (m, 1 H), 3.73 (m, 1 H), 5.25 (m, 1H), 7.3 (m, 4H).

Von den isomeren Acetaten tragen 48 und 49 die Acetoxy-Gruppe in Benzyl-Stellung, wie aus der chemischen Verschiebung von α-H und der nachstehend beschriebenen Hydrierung hervorgeht. Die δ-Werte von 2-H und die Kopplungskonstanten $J_{1,2}$ ordnen 48 die exo- und 49 die endo-Konfiguration zu.

100 mg (0.43 mmol) 48 + 49 in 20 ml trockenem Ethanol wurden mit Pd/C (10%) bei Normaldruck und Raumtemp. 24 h hydriert. Man filtrierte, engte im Rotationsverdampfer ein, nahm in 20 ml Ether auf, wusch mit NaHCO3-Lösung, trocknete mit Magnesiumsulfat und engte erneut ein: 70 mg (94%) 3,4-Benzobicyclo[3.2.1]octen-6-on (51). Eine Probe wurde mittels HPLC [Kieselgel, Hexan/ Ether (4:1)] gereinigt. $- {}^{1}$ H-NMR (CDCl₃): $\delta = 1.9 - 2.0$ (m, 4H), 2.63 (m, 1 H), 2.7 - 3.5 (m, 2 H), 3.36 (d, J = 4.0 Hz, 1 H), 7.1 (m, 4H).

C₁₂H₁₂O (172.2) Ber. C 83.69 H 7.02 Gef. C 83.62 H 6.94

Aus 90 mg (0.48 mmol) p-Toluolsulfonohydrazid und 70 mg (0.41 mmol) 51 erhielt man nach der Vorschrift für 28 (Kristallisation bei -25° C) 50 mg (36%) 52, Schmp. 168 -169° C. - IR (KBr): $\tilde{v} =$ 3450 cm⁻¹ (NH), 1605 (Ar), 1345 (SO₂), 1170 (SO₂). - ¹H-NMR $(CDCl_3): \delta = 1.7 - 2.9 \text{ (m, 7 H)}, 2.35 \text{ (s, 3 H)}, 3.19 \text{ (dd, } J = 17.0 \text{ und}$ 5.0 Hz, 1 H), 3.61 (m, 1 H), 7.1 (m, 6 H), 7.75 (m, 2 H).

$$C_{19}H_{20}N_2O_2S$$
 (340.5) Ber. C 67.03 H 5.92
Gef. C 67.03 H 5.93

20 mg (0.06 mmol) 52 in 5 ml NaOH wurden nach der Vorschrift für 10 belichtet und aufgearbeitet. GC (34.5 m OV 1, 170°C) zeigte 95.1% 54 und 3 Nebenprodukte, von denen eines (2.1%) dem endo-Alkohol 55 entsprach [GC-Vergleich mit einer Mischung 54:55 =15:85, die durch Reduktion von 3 mg (0.009 mmol) 51 mit 10 mg (0.3 mmol) Lithiumalanat in 2 ml Ether erhalten wurde; Substanzmangel verminderte die Charakterisierung von 55]. Mittels HPLC [Kieselgel, Hexan/Ether (1:1)] wurde 54 aus der Belichtung von 52 abgetrennt. - ¹H-NMR (CDCl₃): $\delta = 1.1 - 2.5$ (m, 6H), 2.65 (m, 1 H), 2.85 - 3.25 (m, 2 H), 4.23 (dm, J = 5.6 Hz, 1 H), 6.9 - 7.3 (m, 4H).

Aus einer analaogen Belichtung von 80 mg (0.32 mmol) 52 in 10 ml 0.5 N NaOD/D₂O) wurde mittels HPLC (wie oben) $\lceil^{2}H\rceil$ -54 isoliert. $- {}^{2}$ H-NMR (CCl₄): $\delta = 2.87 (51.5 \pm 0.5\%), 4.14 (48.5 \pm 0.5\%).$

CAS-Registry-Nummern

4: 31444-18-5 / 5: 139070-04-5 / 7: 139070-05-6 / [6-2H]-7: 139070-06-7 / 8: 139070-07-8 / 9: 31444-29-8 / 10: 139070-08-9 / 11 · HCl: 139070-09-0 / 12: 139070-10-3 / 12a: 139070-11-4 / 12b: 139070-12-5 / 13: 4802-43-1 / 13a: 139070-13-6 / 13b: 139070-14-7 / 13c: 139070-15-8 / 13d: 139070-16-9 / 15a: 139070-17-0 / 20: 13153-76-9 / 21: 103457-16-5 / 23: 13153-77-0 / 24: 52092-36-1 / 26: 139070-18-1 / 27: 22099-65-6 / 28: 139070-19-2 / 29: 5387-19-9 / 30: 139070-20-5 / 31: 139164-45-7 / 32: 139070-21-6 / 34: 139070-22-7 / 38: 24309-44-2 / 40: 52092-35-0 / 44: 58040-98-5 / 45: 139070-23-8 / 46 · HCl: 139070-24-9 / 47: 139070-25-0 / 48: 139070-26-1 / 49: 139164-46-8 / 50: 139070-27-2 / 51: 139070-28-3 / 52: 139070-29-4 / 53: 139070-31-8 / [²H]-54: 139070-30-7 / 55: 139164-47-9

- ^[4] S. A. Monti, S.-S. Yuan, J. Org. Chem. 1971, 36, 3350.
 ^[5] ^[5a] E. Piers, E. H. Ruediger, J. Org. Chem. 1980, 45, 1725. –
 ^[5b] E. Piers, G. L. Jung, E. H. Ruediger, Can. J. Chem. 1987, 65, 670

^[1] Zusammenfassungen: ^[1a] G. D. Sargent in Carbonium Ions (Hrsg.: G. A. Olah, P. v. R. Schleyer), Wiley, New York, 1972, Bd. III, S. 1099. – ^[15] H. C. Brown, *The Nonclassical Ion Pro*blem (with comments by P. v. R. Schleyer), Plenum, New York, 1977. – ^[1c] W. Kirmse, Top. Curr. Chem. 1979, 80, 125. – ^[1d] V. A. Barkhash, Top. Curr. Chem. 1984, 116, 1. [1e] P.

Vogel, Carbocation Chemistry, Elsevier, Amsterdam, 1985. ^[2] S. Brandt, W. Kirmse, D. Mönch, H. J. Woroblowsky, Chem. Ber. 1990, 123, 887.

^[3] W. Kirmse, D. Mönch, Chem. Ber. 1991, 124, 237

- ^[6] H. L. Goering, D. L. Towns, J. Am. Chem. Soc. 1963, 85, 2295.
 ^[7] W. G. Dauben, F. G. Willey, J. Am. Chem. Soc. 1962, 84, 1497.
 ^[8] ^[8a] W. Kirmse, N. Knöpfel, K. Loosen, R. Siegfried, H. J. Wroblowsky, Chem. Ber. 1981, 114, 1187. ^[8b] W. Kirmse, R. Siegfried, J. Am. Chem. Soc. 1983, 105, 950.
 ^[9] V. Vichenceli, Y. Tokuno, A. Motsura, K. Kotern. Tatachedoon
- ^[9] K. Kitahanoki, Y. Takano, A. Matsura, K. Kotera, Tetrahedron
- ¹⁰⁶ R. C. Cookson, N. S. Wariyar, J. Chem. Soc. 1956, 2302.
 ¹¹¹ ^(11a) K. Kitahanoki, Y. Takano, Tetrahedron Lett. 1963, 1597. ^(11b) H. Plieninger, W. Lehnert, Chem. Ber. 1967, 100, 2427.
 ¹²¹ H. Langhals, C. Rüchardt, Chem. Ber. 1975, 108, 2156.
 ¹³³ K. Takano, J. Kuriwa, K. Kitahanoki, P. Langhals, C. Rüchardt, Chem. Ber. 1975, 108, 2156.
- K. Takeda, S. Hagishita, M. Sugiura, K. Kitahanoki, I. Bari, S. Miyazaki, K. Kuriyama, *Tetrahedron* 1970, 26, 1435. [13]
- ^[14] H. Tanida, K. Tori, K. Kitahanoki, J. Am. Chem. Soc. 1967, 89, 3212
- ^[15] W. Baker, W. G. Leeds, J. Chem. Soc. 1948, 974.
- ^[16] [^{16a]} H. Tomioka, S. Suzuki, Y. Izawa, J. Am. Chem. Soc. **1982**, 104, 1047, 3156. ^[16b] H. Tomioka, K. Tabayashi, Y. Ozaki,

Y. Izawa, Tetrahedron 1985, 41, 1435. – ^[16c] H. Tomioka, N. Hayashi, T. Sugiura, Y. Izawa, J. Chem. Soc., Chem. Commun. 1986, 1364. – ^[16d] W. Kirmse, K. Kund, J. Org. Chem. 1990, 55, 2325. - ^[16e] W. Kirmse, J. Kilian, S. Steenken, J. Am. Chem.

- *Soc.* **1990**, *112*, 6399. ^[17] ^[17a] Übersicht der älteren Literatur: P. R. Story, B. C. Clark, Jr. in Carbonium Ions (Hrsg.: G. A. Olah, P. v. R. Schleyer), In-terscience, New York, 1972, Bd. III, S. 1016. – ^[17b] S. J. Cristol, D. A. Beimborn, J. Am. Chem. Soc. 1973, 95, 3651. – ^[17c] C. C. Lee, E. F. C. Ko, J. Am. Chem. Soc. 1974, 96, 8032. – ^[17d] P. Lice, E. T. C. Ro, J. Am. Chem. Soc. 1914, 90, 8052.
 Vogel, R. Delseth, D. Quarroz, Helv. Chim. Acta 1975, 58, 508.
 — [17e] W. Kirmse, N. Knöpfel, J. Am. Chem. Soc. 1976, 98, 4672.
 [18] M. Geisel, C. A. Grob, R. P. Traber, W. Tschudi, Helv. Chim. Acta 1976, 59, 2808.
 [19] M. Guisel, C. M. Grob, R. P. Traber, W. Tschudi, Helv. Chim. Acta 1976, 59, 2808.
- ^[19] M. Nakazaki, K. Naemura, H. Yoshihara, Bull. Chem. Soc. Jpn. 1975, 48, 3278.
- ^[20] R. C. Hahn, L. J. Rothman, J. Am. Chem. Soc. 1969, 91, 2409. [9/92]